Fenômenos Periódicos
Chamamos de fenômenos periódicos tudo que se repete da mesma forma, em um mesmo intervalo de tempo. O dia e a noite, por exemplo, são fenômenos periódicos, pois todos os dias o sol raia no mesmo horário, dando início ao dia, e se põe, também no mesmo horário, dando início à noite.
A Importância dos Fenômenos Periódicos
Esses fenômenos periódicos são muito importantes para a contagem do tempo. Nosso calendário, por exemplo, foi construído a partir de corpos celestes que executam movimentos periódicos. O movimento da Lua também é um fenômeno periódico. Todos os dias ela dá uma volta em torno da Terra, periodicamente, ou seja, todos os dias e la faz o mesmo trajeto, em um mesmo período. Esses fenômenos periódicos também são muito usados em construção de gráficos
Exemplos de Fenômenos Periódicos

O movimento da lua é um exemplo de fenômeno periódico
Além dos movimentos do Sol e da Lua, que fazem com que aconteçam o dia e a noite, existem muitos outros fenômenos periódicos no nosso dia-a-dia. Veja alguns exemplos:
A função sen x é um exemplo de fenômeno periódico, pois a cada período de 2π tudo volta a se repetir. Veja:
sen 0 = 0, sen 90º= 1 , sen 180º= 0, sen 270º= -1, sen 360º(ou 0º) = 0.
As fases da lua também é um bom exemplo, que se repete a cada 28 dias. Fenômeno físico periódico: período – 28 dias, com 4 fases (nova, crescentes, cheia e minguante, que duram sete dias cada uma. Logo, 4 x 7 = 28 dias)
Trigonometria
A Trigonometria (trigono: triângulo e metria: medidas) é o estudo da Matemática responsável pela relação existente entre os lados e os ângulos de um triângulo. Nos triângulos retângulos (possuem um ângulo de 90º), as relações constituem os chamados ângulos notáveis, 30º, 45º e 60º, que possuem valores constantes representados pelas relações seno, cosseno e tangente. Nos triângulos que não possuem ângulo reto, as condições são adaptadas na busca pela relação entre os ângulos e os lados.Os estudos iniciais estão relacionados aos povos babilônicos e egípcios, sendo desenvolvidos pelos gregos e indianos. Através da prática, conseguiram criar situações de medição de distâncias inacessíveis. Hiparco de Niceia (190 a.C – 125 a.C) foi um astrônomo grego que introduziu a Trigonometria como ciência, por meio de estudos ele implantou as relações existentes entre os elementos do triângulo. O Teorema de Pitágoras possui papel importante no desenvolvimento dos estudos trigonométricos, pois é através dele que desenvolvemos fórmulas teóricas comumente usadas nos cálculos relacionados a situações práticas cotidianas.
Devemos ressaltar que a Trigonometria objetivou a elaboração dos estudos das funções trigonométricas, relacionadas aos ângulos e aos fenômenos periódicos. A partir do século XV, a modernidade dos cálculos criou novas situações teóricas e práticas relacionadas aos estudos dos ângulos e das medidas. Com a criação do Cálculo Diferencial e Integral, pelos cientistas Isaac Newton e Leibniz, a Trigonometria ganhou moldes definitivos no cenário da Matemática, sendo constantemente empregada em outras ciências, como Medicina, Engenharia, Física (ondulatória, óptica), Química, Geografia, Astronomia, Biologia, Cartografia, Navegação entre outras.
Conclusão Ramo da matemática que trata das relações entre os lados e ângulos de triângulos (polígonos com três lados). A trigonometria plana lida com figuras geométricas pertencentes a um único plano, e a trigonometria esférica trata dos triângulos que são uma seção da superfície de uma esfera.
A trigonometria começa como uma matemática eminentemente prática para determinar distâncias que não podiam ser medidas diretamente. Serve à navegação, à agrimensura e à astronomia. Ao lidar com a determinação de pontos e distâncias em três dimensões, a trigonometria esférica amplia sua aplicação à física, à química e a quase todos os ramos da engenharia, em especial no estudo de fenômenos periódicos, como a vibração do som e o fluxo de corrente alternada.
FEITO POR
THIFANY - JULIA - GUSTAVO - GABRIEL - CAIQUE 2°B
Nenhum comentário:
Postar um comentário
Observação: somente um membro deste blog pode postar um comentário.