sexta-feira, 8 de abril de 2016

 Trigonometria

  A Trigonometria (trigono: triângulo e metria: medidas) é o estudo da Matemática responsável pela relação existente entre os lados e os ângulos de um triângulo. Nos triângulos retângulos (possuem um ângulo de 90º), as relações constituem os chamados ângulos notáveis, 30º, 45º e 60º, que possuem valores constantes representados pelas relações seno, cosseno e tangente. Nos triângulos que não possuem ângulo reto, as condições são adaptadas na busca pela relação entre os ângulos e os lados.

  Os estudos iniciais estão relacionados aos povos babilônicos e egípcios, sendo desenvolvidos pelos gregos e indianos. Através da prática, conseguiram criar situações de medição de distâncias inacessíveis. Hiparco de Niceia (190 a.C – 125 a.C) foi um astrônomo grego que introduziu a Trigonometria como ciência, por meio de estudos ele implantou as relações existentes entre os elementos do triângulo. O Teorema de Pitágoras possui papel importante no desenvolvimento dos estudos trigonométricos, pois é através dele que desenvolvemos fórmulas teóricas comumente usadas nos cálculos relacionados a situações práticas cotidianas.

  Devemos ressaltar que a Trigonometria objetivou a elaboração dos estudos das funções trigonométricas, relacionadas aos ângulos e aos fenômenos periódicos. A partir do século XV, a modernidade dos cálculos criou novas situações teóricas e práticas relacionadas aos estudos dos ângulos e das medidas. Com a criação do Cálculo Diferencial e Integral, pelos cientistas Isaac Newton e Leibniz, a Trigonometria ganhou moldes definitivos no cenário da Matemática, sendo constantemente empregada em outras ciências, como Medicina, Engenharia, Física (ondulatória, óptica), Química, Geografia, Astronomia, Biologia, Cartografia, Navegação entre outras.

Fenômenos periodicos

O que são?
·  Chamamos de um fenômeno de periódico aquele que se repete sempre após o mesmo intervalo de tempo. Um exemplo mais simples de um fenômeno de periódico é o dia. O movimento do Sol que aparecer pela manhã e se por no fim da tarde até novamente aparecer de novo, determina o que chamamos de dia. Um outro conceito que ajuda a complementar esse é que os fenômenos periódicos são aqueles que se repetem periodicamente ou seja, a cada período inteiro.

Por que são importantes?
·  Os fenômenos periódicos podem ser muito úteis para medir a passagem do tempo. Os corpos celestes foram muito importantes por que, entre eles, há diversos que executam um movimento periódico que podem ser percebidos por nós e por isto, foram utilizados para construir o nosso calendário. Estando na Terra, como nós estamos, e olhando para o céu nós podemos perceber muitos movimentos periódicos. Os mais fáceis de observar são os movimentos do Sol e da Lua. Muitos fenômenos ou situações que estão presentes em nosso dia a dia são periódicos, isto é, de tempos em tempos se repetem, e um outro exemplo que colabora com essa afirmação é o nascer do sol e por do sol.
·  Um outro bom exemplo é a função sen x pois a cada período de 2π tudo volta a se repetir:
·  sen 0 = 0, sen 90º= 1 , sen 180º= 0, sen 270º= -1, sen 360º(ou 0º) = 0.
·  A partir daí mais uma volta completa (2π), onde todos os valores se repetem  sucessivamente.
·  As fases da lua: A cada 28 dias se repetem: fenômeno físico periódico. (período - 28 dias) - (4 fases - nova, crescentes, cheia e minguante- que duram sete dias cada uma 4 x 7 = 28 dias).
Curiosidades: As funções trigonométricas podem ser modelos matemáticos de vários fenômenos que se repetem como as variações diárias na temperatura da atmosfera terrestre, a pressão sanguínea do coração e o nível de água em uma bacia marítima devido à sua periodicidade.

conclusão
  Fenômeno periódico e tudo aquilo que se repete sempre após o mesmo intervalo de tempo, um dos exemplos o sol que aparece de manha e se põe no fim da tarde, outro também que pode se falar e a lua e suas fases, que a cada 28 dias se repete .

Bibliografia

Apresentado por:
Brenda Cristina
Ayra nascimento
Matheus vilela
Monique Alves
Tifannie Tamires
Nicolly 
2°C

Nenhum comentário:

Postar um comentário

Observação: somente um membro deste blog pode postar um comentário.